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TAMÁS DUSEK[1]

Comparison of Air, Road, Time and  
Cost Distances in Hungary 

The aim of this study is to discuss the differences between geographical, road, 
time and cost distances with the help of the Hungarian railway network and 
road network data. The first section deals with the general characteristics of 
distances and spaces and the validity of metrical axioms in time and cost space. 
Time and cost space are more complex than geographical space, because there 
is only one measurement of air kilometer and the kilometer distance between 
points of network can be determined more or less precisely. However, time 
distances and cost distances fall into an interval and at best only shortest or 
typical distances, shortest or typical lengths of time and the cheapest or typical 
costs can exist. The second and third sections compare locally and globally the 
geographical space and various road, time and cost spaces. 

INTRODUCTION

Differences between various spaces can be measured with various global and 
local indices. Global indices show the size of differences between two spaces as 
a whole, whereas local indices describe the distortion of a point or a smaller area 
compared to a reference space. The reference space of comparison is often but 
not always the geographical space. Local indices are able to detect points and 
areas where some barriers of connection may exist and where improving the 
network may have the biggest effect on the change of accessibility. Graph theory 
can also be effectively used in measuring the properties of the networks.

The aim of this paper is to present some Hungarian examples for the construc-
tion and visual representation of non-Euclidean geographical spaces. The meth-
odological framework of analysis can be briefly summarized in the following. 
There is a set of distance relations between various locations, obtained for exam-
ple from the transportation system of a geographical space. The data should be 
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organized in a matrix with all sets of origins and destinations. Multidimensional 
scaling uses the distance matrix as input and then generates another matrix, 
containing the coordinates of points of the investigated space. Diagnostic tools 
of multidimensional scaling help to determine whether a meaningful spatial 
structure exists (Ahmed – Miller, 2007).

Bidimensional regression can compare the result of multidimensional scal-
ing (MDS) with the geographical space. Bidimensional regression is a method 
to compare two or more two-dimensional surfaces. It is an extension of linear 
regression where each variable is a pair of values representing a location in a 
two-dimensional space. Bidimensional regression numerically compares the 
similarity between two-dimensional surfaces through an index called bidimen-
sional correlation. The three different spaces and distance matrices (reference or 
source map, image map and predicted map) can be compared pairwise. There-
fore, three different distance/(dis)similarity measures can be created, not just 
one, as in the case of unidimensional regression. 

The visual representation of various spatial relations and map transforma-
tions were carefully examined in the groundbreaking works of Waldo Tobler 
(Tobler, 1961; Tobler, 1963). Multidimensional scaling is a well-known statisti-
cal tool used in many fields of research. Regarding the use of multidimensional 
scaling in spatial analysis, one has to mention among the first to use this method 
Marchand (1973) paper, Gatrell’s monograph (Distance and Space, 1983) and 
articles by Spiekermann and Wegener. Bidimensional regression was originally 
developed in 1977 by Waldo Tobler but was not widely known until the tech-
nique was published in 1994. Compared to the multidimensional scaling, bidi-
mensional regression is not as well known. It is applied to analyze and meas-
ure the relative distortion of historic maps (for example Lloyd and Lilley, 2009; 
Symington et al., 2002), to compare cognitive maps (Friedman – Kohler, 2003) 
and to compare spaces generated by multidimensional scaling (Ahmed – Miller, 
2007). About the methodological framework of the analysis Ahmed – Miller, 
Axhausen – Hurni and Friedman – Kohler also give an excellent overview.

DISTANCES AND SPACES IN GENERAL

The concept of distance and space is the principal category in geography and 
should be treated in a more adequate manner in other fields of study, such as in 
most of the areas of regional economics. It is well known to spatial researchers 
that aspatial techniques cannot capture the relationships inherent in geographic 
phenomena. Spatial investigations often require either special research methods 
or spatial adaptation of aspatial techniques. 

It is both impossible and unnecessary to give a general concept of space. At 
the beginning of the majority of works concerning spatial problems a philosoph-
ical or scientific definition of space or at least a review about the various space 
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concepts is given. Among the general philosophical space concepts the absolute, 
relational and Kantian interpretations can be distinguished. According to the 
absolute space concept, space is an object beside other objects. The relational 
space concept treats the space as a relation between the objects, which has no 
existence apart from the existence of those objects. Kant described the space as 
a priori notion that allows us to comprehend sense experience. The term space 
is also used in pure mathematics, where a space is a set, with some particu-
lar properties and usually with some additional structure. Space definitions of 
mathematics have nothing in common with the ordinary everyday use of the 
word, but of course, from a mathematical point of view, it is entirely adequate. 

These various concepts of space have reason for the existence in different 
contexts and not one of the concepts can be treated as an absolute or exclusive 
definition. Euclidean geometry, architecture and everyday experience support 
the absolute space view. Results of physics speak in favour of relational space. 
From a psychological point of view, Kantian space view is acceptable. It only 
causes trouble when someone lays claim to exclusiveness of one particular defi-
nition of space. It is a strange situation when, for example, the absolute space 
view of Euclidean geometry is challenged and criticized from the point of view 
of the relativity theory of physics. The opposite claim would sound more absurd, 
namely to criticize the relativity theory because of the absolute space view of 
Euclidean geometry. The relativity theory is not useful for the investigation of 
architectural space either. Products of architecture are spaces themselves and 
architectural space is treated as an absolute three dimensional immaterial (in 
the everyday use of the word) expansion. 

The shortest ways between the points of a network generate the space of trans-
port network, the shortest (or average) time which is needed to reach from one point 
to another creates the time spaces, the lowest (or average) cost which is needed to 
reach from one point to another forms the cost spaces. The order of enumeration 
of different spaces corresponds to the order of their calculability. Firstly, the space 
of transport network has to be calculated then knowledge of the physical charac-
teristics of the network, time spaces (for example time space of public transport, 
individual transport, carriage) can be determined, and last the various cost spaces 
can be identified. The shortest route between two points can be different in the 
physical sense in various spaces, for example, using the motorway, time can be 
shorter but the distance in kilometers can be longer and the monetary cost can 
be higher than other possible routes. In railway traffic, high speed trains operate 
typically only between pairs of large cities. The different types of trains (stopping 
trains, fast trains, Intercity or high speed trains) can be joined when someone 
wants to travel from a small location to a farther bigger centre or back (see exam-
ples for this in Kotosz, 2007). Beside the speed differences, the monetary costs can 
also be different and the schedule effect has to be taken into account too. 

Geographical space is continuous; each point of a topographic map can be 
interpreted as an element of space. However, the time and cost spaces contain 
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nodes and lines. The network structure means that exact distances are interpret-
able only between the nodes and not for a surface. 

The geographical space has metrical characteristics, that is, prevail these 
axioms:
1. The distance between two points is zero if and only if the two points are 

identical (the separation axiom).
2. The distance between two points is positive if the two points are different. 
3. The distance from point A to point B is identical to the distance from point  

B to point A (symmetry axiom).
4. The distance from point A to point B cannot be larger than the sum of the 

distance from point A to point C and the distance from point B to point C 
(axiom of triangle inequality).
The first two axioms are also valid in time spaces. The first axiom is not valid 

in cost spaces; the third and fourth axioms are valid neither in time spaces nor in 
cost spaces. The reasons for this and several examples are discussed elsewhere, 
see for example Dusek – Szalkai (2006).

SOME MORE WORDS ABOUT THE USE OF MULTIDIMENSIONAL SCALING 

It is an interesting fact that originally the multidimensional scaling was a result 
of the mathematization of psychology in the nineteen thirties and forties. In the 
journal Psychometrika, the most ground-breaking papers on the subject were 
published (Young, 1987). Besides in psychology the method is widely used in 
marketing, sociology, political science, anthropology, and linguistics. Stefflre’s 
following interpretation of the essence of the method can be treated as typi-
cal: “Multidimensional scaling refers here to the analysis of judged similarity 
data (individual or aggregate) by techniques that attempt to represent these 
data by a spatial configuration” (Stefflre, 1972, 211.). Thus, non-spatial applica-
tions of the method were the first, but as an illustrative example, geographical 
distance matrices are often used as an input matrix and spatial configuration 
of the geographic objects (mainly settlements) is the output of the method. For 
example, János Podani (1997) uses ten European metropolises, Gatrell (1983) 
British cities, Greenacre and Underhill (1982) Southern African airports in their 
examples. 

Imre Lengyel also mentions the possible spatial use of the method. In his 
analysis there are spatial objects (Hungarian cities), but the distance matrix 
were calculated not by geographical characteristics but socio-economical differ-
ences (Lengyel, 1996; Lengyel, 1999). For non-spatial applications, the creation 
of the input distance matrix is an interesting and methodologically important 
question. For example, in psychology attitudes, opinions and emotions meas-
ured by Likert-scales some distance is created, but there is not an obvious meth-
odology to transforming these pairwise distances to a whole distance matrix. 
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The nonmetric case is also more frequent in non-spatial applications, when only 
the ranks of the distances are known between the various objects. 

There are numerous measures for the goodness-of-fit (or sometimes named 
badness-of-fit) of the reproduction of the input distance matrix. The most obvi-
ous choice for a goodness-of-fit statistic is one based on the differences between 
the actual distances and their predicted values. Kruskal proposed the following 
formula, called Stress-1 in the literature: 

Where f(pij) means the distances calculated by the multidimensional 
scaling, dij(x) means the original distances in a standardized form. The average 
of the square of the standardized distances is 1. This is the most common 
stress measure. Other measures of stress are different only mainly in the way 
of standardization. Kruskal (1964) proposed the following interpretation of this 
measure: above 0.2 the solution is poor, between 0.025 and 0.05 it is excellent, 
and when it is under 0.025, it is perfect (Table 1). Another proposal came from 
Guttmann, who drew the line of acceptable-unacceptable solution at 0.15 (Borg 
– Groenen, 1997, 37.).

Table 1: The interpretation of Stress-1 according to Kruskal (1964)

Stress-1 Goodness-of-fit

0.2<Stress-1 poor

0.1<Stress-1≤0.2 fair

0.05<Stress-1≤0.1 good

0.025<Stress-1≤0.05 excellent

0≤Stress-1≤0.025 perfect

Source: Kruskal (1964).

However, these proposals are deceptive. The least problem is that these values 
cannot be interpreted as strict borderlines, and context is always important. 
The biggest problem is that the goodness-of-fit can be interpreted only in a 
mathematical sense as a good-wrong scale, where bigger values mean a worse 
solution. Stress-1 above 0.2 is wrong only from a mathematical point of view, but 
otherwise good, because this perfectly mirrors the complexity of actual distance 
relations. Borg and Groenen, surveying previous methodological studies and 
simulations, summarized the various factors, which have an influence on the 
stress measures. These can be seen in Table 2. 
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Table 2: Factors influencing the stress measures

Factor Effect on stress
Number of dimensions (m) The higher m, the lower stress
Number of points (n, observations) The higher n, the higher stress in general
The error in the data More error means higher stress
The number of missing data More missing data leads to lower stress,  

in general
The MDS model Interval MDS generally leads to higher 

stress than ordinal MDS

Source: Borg – Groenen (1997).

For the sake of illustrating Stress-1 measure, its value for various MDS 
solutions of distance matrices among the six biggest Hungarian cities can be 
seen in Table 3. Of course, the smallest stress can be observed in the air distance 
matrix: only the sphericity of the earth hampers the most perfect solution in this 
case. The speed differences of various network elements lead to higher stress of 
time distances, compared to network kilometer distances. This stress measures 
the deformation of the whole structure with one impressive number. However, 
the geographical decomposition of stress to particular points or pairs of points 
offers an extremely powerful method for geographical, spatial analysis. 

Table 3: Value of stress-1 (six biggest Hungarian cities)

Distance Stress-1
Shortest public road time distance by car 0,1335
Shortest public road kilometer distance 0,0844
Air distance 0,0086
Shortest time by rail (2009) 0,1361
Smallest cost by rail (2009) 0,1212
Smallest kilometer distance by rail (2009) 0,0859

Source: own calculation.

THE STUDY AREA AND DATA

In the empirical part of the paper, the spaces of the Hungarian railway network 
and public road network will be analyzed and compared to each other. The short-
est road distance in kilometers, time distance in minutes for both networks and 
for the railroad, and the cost distance in Hungarian forint were completed. The 
source of railroad data is the timetable of the Hungarian Railway. The reference 
matrix includes the air distance. The largest distance matrix was calculated for 
142 nodes: the biggest cities, railway junction settlements (sometimes these are 
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smaller cities or villages) and the endpoints of the network. The other three 
matrices consist of 23 points (Budapest and the cities with county rights, with-
out Érd), 42 points (the cities with county rights and other medium size cities) 
and 77 points (the cities of above 15 thousand inhabitants). 

The emphasis is on the railroad network. For the sake of comparability the 
public road network consists of the same points as the railroad network. The 
map of Hungarian railway network can be seen in Figure 1. According to the 
new time schedule of December 2009, passenger transport was stopped on 29 
railway lines (altogether 868 kilometers). The calculation was conducted for 
both networks, therefore those points were chosen for the analysis, which are 
also available on the reduced network. 

Previous works on the subject (for railway Kovács, 1973; for railway and 
public road Szalkai 2001; Szalkai 2004; for public road Fleischer, 1992) concern 
a larger railway network and use the detour index and isodistance maps with 
the centre of Budapest for the description of relative accessibility of the nodes 
of the network. 

Figure 1: The Hungarian railway network  
(with nodes of various distance matrices)

Source: own figure.
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RESULTS OF MULTIDIMENSIONAL SCALING

The 28 distance matrices were analyzed by the PROXSCAL technique of multi-
dimensional scaling. The Stress-1 of 28 distance matrices can be seen in Table 
4. Smaller values mean more even network and accessibility, without big differ-
ences between the various points of the network. The smallest value belongs to 
the public road network distance, which is a denser network than the railway 
network. The highest value is 0.213, thus the general configuration of distance 
matrices can be reproduced well or on an acceptable level in two-dimensional 
Euclidean spaces. In the case of time distances the stress is always higher, 
because of the different speeds of various parts of the network. The biggest 
network has higher stress in the case of railway time distance. The reason for 
this is that the smaller locations are not accessible with high-speed trains there-
fore the difference between average speeds is higher. The size of the network 
also has an impact on the results, but in a different manner for the time distance 
of railway and the time distance of public road. This can be explained by the 
dead time of changing trains when someone wants to travel to a smaller location.

Table 4: Stress-1 measures of distance matrices

23 nodes 42 nodes 77 nodes 142 nodes 

Network distance, railway, 2009 0,095 0,092 0,094 0,096

Network distance, railway, 2010 0,099 0,099 0,099 0,100

Time distance, railway, 2009 0,142 0,156 0,148 0,176

Time distance, railway, 2010 0,149 0,164 0,154 0,205

Cost distance, railway, 2009 0,138 0,133 0,144 0,160

Network distance, public road 0,087 0,110 0,107 0,113

Time distance, public road 0,179 0,213 0,118 0,124

Source: own calculation.

It is interesting to analyze the decomposition of stress also. The contribution 
to stress by points can be seen in Figure 2, for the network distance matrix 
(2010) and time distance matrix (2010). Those areas can be identified very 
well, where the structure of network is highly uneven. In the case of public 
road time distance, Hódmezővásárhely and Salgótarján have the biggest 
contribution to stress. Hódmezővásárhely can be explained by the absence 
of its position close to a main axis. In the case of Salgótarján the periferical 
location and the bad connection to Eger and Miskolc can be the explanation 
for the higher relative stress. 
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Figure 2: Decomposition of normalized raw stress  
(network distance matrix and time distance matrix, 2010)

Source: own compilation.

RESULTS OF BIDIMENSIONAL REGRESSION

In this part only some general results will be presented in the form of various 
figures. For the sake of simplicity only the smallest network (with 22 nodes) will 
be depicted. Larger networks are more complex and harder to interpret. Graphi-
cal display is much richer in information than the quantitative display of the 
coordinates and their differences, because it shows the size and the direction 
of the change concerning all settlements. For example, it can be seen on every 
Figures that Budapest shifted in the direction of the centre of gravity, because 
its accessibility is better than its otherwise favourable, near-central geographi-
cal location. 

The calculations and graphical representation were conducted by program 
Darcy 2.0. (Downloadable from the homepage http://www.spatial-modelling.
info/Darcy-2-module-de-comparaison) A description of the program can be 
read in Cauvin’s paper (Cauvin, 2005). Figure 3 serves as a reference map, with 
the county borders of Hungary, with the cities with county right and with the 
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adjusted coordinates of multidimensional scaling of railway network distance 
matrix. Figure 4 shows the railway network distance space. The origin of the 
vectors is the location of cities in geographical space; the end point is the location 
of cities in railway network space. The relative position of the cities in the railway 
network space was calculated with multidimensional scaling, the absolute 
position with the same coordinate system as the locations in geographical 
space was calculated with bidimensional regression. The deformation of county 
borders was calculated by interpolation, for the sake of further generalization 
and more visual information. Figures 5-8 show four different spaces, with the 
same methodology constructed. 

Figure 3: County borders of Hungary and cities with county right  
(geographical location: blue dot, MDS location: orange dot)

Source: own compilation.

Figure 4: Railway network distance space, 2010

Source: own compilation.
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Figure 5: Railway time distance space, 2010

Source: own compilation.

Figure 6: Railway cost distance space, 2010

Source: own compilation.

Figure 7: Public road network distance space, 2009

                                                                   Source: own compilation.
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Figure 8: Public road time distance space, 2009

Source: own compilation.

There are two common characteristics of all maps. Firstly, the widening of 
the East-West distances in the Southern part of the country. The Danube has 
the biggest barrier effect in Hungary, South from Budapest there is just one 
railroad bridge and four public road bridges over the Danube, solving the East-
West traffic. Secondly, space around Budapest is narrowed, because of the radial 
character of network, with Budapest in the centre. These two characteristics 
can be seen on Figure 6, where the displacement vectors of the transformed 
geographical space are depicted. 

SUMMARY 

Non-Euclidean spaces cannot be represented in two dimensions without stress 
and residuals. However, the depicted transformed maps show a more accurate 
picture of the various distance matrices than the geographical maps, based on 
air distances. Important limitation of the maps is that they suggest (similar to 
topographic maps) a continuous space, but in reality the depicted spaces consist 
of nodes and lines.
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HUNGARIAN SUMMARY

A tanulmány a földrajzi, úthálózati, idő és költség távolságok alapján létrejövő 
különböző magyarországi terek közötti különbségeket vizsgálja. A bevezetést  
követően általános áttekintést ad a különböző terek sajátosságairól, majd a 
multidimenziós skálázás területi alkalmazhatóságával kapcsolatos néhány 
kérdést vázol. A multidimenziós skálázással készült tereket (közúti és vasúti 
hálózati és időteret, valamint a vasúti költségteret) a kétdimenziós regresszió 
segítségével teszi ábrázolhatóvá. Valamennyi nem földrajzi tér sajátossága az 
ország északi felének a kelet-nyugati irányok mentén történő viszonylagos 
zsugorodása, valamint a déli országrésznek a kelet-nyugati irányú szélesedése. 
Ez összhangban van az ország közlekedési hálózatának ismert jellemzőivel.
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